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A three-dimensional system of ordinary differential equations of first order has been
proposed to describe the kinetics of a model tribopolymerization process for which a lin-
ear coupling of the material surface dislocation density and polyreaction fields is assumed.
Another important physical motivation on which the model is based stresses the predomi-
nant role of a highly rough surface under friction as a catalyst in the polyreaction process.
In consequence, the fractal-like chemical reaction concept has been applied. It is demon-
strated that the system proposed is suitable for describing a variety of tribopolymerization
processes and possesses non-trivial time-dependent behaviour even in some limiting analyt-
ical cases studied. As a specific result, a nonlinear equation generalizing the Vogel–Fulcher
temperature-dependence of the maximum time scale for the polyreaction caused by friction,
characteristic of the selective transfer during friction process, has been recovered. Some
comparison with an approach made earlier (G.P. Shpenkov, Friction Surface Phenomena
(Elsevier, Amsterdam, 1995) pp. 165–172 and Ref. [239] therein) has been presented as
well. Certain basic trends of modelling and experiment are in good agreement.

1. Introduction

In recent years friction phenomena attract permanent interest of engineers and
scientists because of offering a large number of problems to solve (complexity and
co-operativity, self-organization, transport processes at surfaces with chemical reaction
included, fractal characteristics of rough surfaces, wear mechanism, spatio-temporal,
possibly periodic, behaviour of defect-containing surface systems, etc.) as well as
because of a wide range of applications in many areas of technology and engineering
(lubrication in machinery systems, thin film and coating technology, oxidation for
hardening of metal surfaces, production of abrasive materials, etc.) [1–3].

It is commonly accepted that when one wishes to study a friction process, both
experimentally or theoretically (i.e., by formulating analytical or computer models, or
by combining them), one should know at least: the type of material under friction
(metal, alloy, polymer or others), its crystallographic characteristics that has to be
mostly related to its surface region; the basic properties of the lubricant which may form
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an interlayer and can actively take part in friction process; and its physico-chemical
characteristics (which are polymer additives, if they are applied, for example).

Specialists of tribology realize that there are many key problems which stand for
the general topics listed above; e.g., to the first class may belong: crystallographic
characteristics of the surface layer, information about the density of surface defects
and dislocations or about roughness of the surface, or other more specific, e.g., what is
its fractal dimension [3]. The second class of the above listed topics can specifically
include, for instance, the chemical reaction between polymer additives and oxygen
molecules, hydrogen transport through friction interlayer or permanent change of wear
intensity, saturation of surface dislocations by macromolecules adsorbed, rheology of
the friction interlayer, etc. [4]. The third class of problems concerns, e.g., treatment
of surface layer, alteration of the dislocation density and a change in submicrorelief of
the surface, periodicity of friction conditions (manifested by a periodic behaviour of
such quantities like, i.e., electron work function, contact potential difference, friction
coefficient or surface dislocation density, etc. [2,4]) related to the periodicity of the de-
fect accumulation, formation of submicrocracks in separate subsurface microdomains
or emergence of fatigue microcracks, “affinity” of the abrasive material to the struc-
ture of the surface under friction, growth and/or propagation of cracks, stress–strain
response of the surface under friction, and many others [4–6].

Among many aspects of tribological processes (structural, dynamical, also tech-
nological, etc.) the kinetic aspect seems to be very interesting because of the possibility
of predicting time behaviour of the complex and co-operative self-organized friction
phenomena. In particular, we have in mind a tribopolymerization process in which
one can observe a coupling of two physico-chemical factors: those which arise from
the friction aspect of the phenomenon and are associated to a change of surface char-
acteristics (like roughness or fractal dimension) under friction, and those which are
related to the chemical reaction within the system.

It is then postulated that a coupling of the two main sub-processes (i.e., friction
manifested by the dislocation density change and polyreaction) constitutes the whole
process that we are going to study. Let us recall here some physical rationale that
may justify our theoretical treatment. Namely, we are thinking of some friction pair
with an interlayer consisting of a lubricant (containing surfactant or monomer) in be-
tween, where the friction process proceeds under a certain external load and some
action of the load and a penetration (wetting) of the surfactant occur simultaneously.
As a consequence, a plasto-elastic deformation of the surface is observed and some
adsorptional reduction of its strength or energy takes place, so, the surface must be in
a stress state (these are symptoms of the so-called Rehbinder’s effect; cf. [4, chapter 1,
pp. 31–34] for examples). Moreover, surfactant adsorption affects the interaction of
dislocations with the surface by diminishing the surface energy barrier that inhibits
dislocations on the surface causing some crystal softening with an insignificant de-
crease of interfacial energy. The absence of oxide films appears to be a beneficial
effect on the movement of dislocations, and plastic deformation is enhanced just in
this way. This is named the selective transfer phenomenon (ST) which is a very com-
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plex phenomenon, because of being a multistage process. Following [4, section 3.11,
pp. 113–120], one can observe, at least, five stages of its realization: surface disper-
sion due to plasto-elastic deformation and Rehbinder’s effect, redox processes with
hydrogen emergence, steady-state friction (where the lubricant is a disperse system
saturated mostly with metal ions, colloidal metallic particles or anion-active surfac-
tants), tribochemical transformations of the lubricant in which a monomer or surfactant
is dispersed and, finally, formation of a gel-like (soft) layer (being also termed as the
“servovite” layer). As a standard example here, one can mention sliding of steel-
copper alloy couples in glycerin. Also, a sliding process of nickel in TSIATIM-201
with 3% wt powder fluoroplastic (ftorplast-3) greases, with a periodic behaviour of
the nickel surface dislocation density in the surface volume of ca. 1 µm thick, can
serve as an example (cf. [4, chapter 4, pp. 162–165]). In such a complex phenomenon
and under the above described physico-chemical circumstances, one may easily find
an influence of surfactants dispersed in the lubricant on the creation and/or annihila-
tion of surface dislocations, mostly due to the plasto-elastic deformation of the surface
originated by the simultaneous action of physical adsorption (penetration or wetting)
and external load together. On the contrary, it is quite natural to imagine that disloca-
tions will act as active (catalytic) sites for the polyreaction process. This having been
said, we will use this postulate in a form of some “coupling ansatzes” in our further
considerations (see equations (3) and (4) in the next section). Stating it explicitly, one
has to realize that the model tribopolymerization system proposed here refers to the
ST-phenomenon during the friction process.

The goal of this study is to propose and examine some descriptions of the kinetics
of a model tribopolymerization process. Here, by a model tribopolymerization process
we wish to understand a three-dimensional dynamical system (system of autonomous
ordinary differential equations of the first order) in which three dependent variables are
functions of time and depend upon some physico-chemical process parameters (like
chemical reaction rate constant, coefficients of creation and annihilation of disloca-
tions, order of the chemical reaction, also temperature, etc.). These three variables
are: density of surface dislocations, concentration of reacting species (monomers, free
radicals) present in a friction interlayer and chemical reaction rate coefficient which is
time-dependent (typically, i.e., in classical chemical kinetics, it depends mostly upon
temperature) [7,8]. In a previous study a two-dimensional dynamical system was suc-
cessfully applied (cf. [4, section 4.6, pp. 165–172; 6]) for elucidating in a theoretical
way a periodicity of some triboparameters like density of surface dislocations. In this
work we generalize that approach [4,6] by assuming that the chemical reaction rate
coefficient can be time-dependent which technically results in adding a third ordinary
differential equation of first order to the previously proposed two-dimensional descrip-
tion (cf. [4] for details). Conceptually, however, it is connected with a “compression” of
time scale of the process. The reason for such a generalization, however, is absolutely
of physical nature: systems under friction (e.g., some pieces of alloys or amorphous
materials like several polymers, ceramic–polymeric composites or even biopolymers)
usually have pretty huge and well-developed surfaces (of the fractal nature; viz. self-
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affine surfaces) [9,10], and therefore, the concept of classical (conventional) chemi-
cal kinetics is probably not sufficient to be applied, but rather a modern concept of
fractal-like kinetics which assumes that in some highly catalytic and diffusion–reaction
systems an anomalous chemical reaction may proceed (since there exist some traps, ob-
stacles, microcavities, certain geometrical constraints like terraces or ledges (also, hills
and valleys of the “surface landscape”), or, in general, some surface spots, like defects
or dislocations, of slowing down or accelerating the process), being of a non-integer
(fractional) order and owing time-dependent reaction rate of a power form [7,8,11].
In the dynamical system proposed here, all the dynamic (interaction) effects like cou-
pling between the surface dislocation density and concentration of the polyreactants are
clearly manifested in system behaviour. It is also possible to imagine a random walk
(diffusion–reaction) [12] process in the vicinity or even directly on the catalytic surface
which is now the friction surface. The fractal dimension of the surface [9,10,13] and
the fractal dimension of the random walk [12] (constituting the so-called spectral or
fracton dimension [12,14]) complete the system characteristics. Postulating, however,
the fractal-like kinetics as the most useful tool in our description, we are also aware of,
e.g., that simple second order chemical reactions are able to exhibit exotic or anomalous
behaviour like periodicity, chaos (Bielousov–Zhabotinsky reaction), chemical patterns
(Turring structures), negative Arrhenius activation energies, Kramers bistability in the
regime of very small noise intensities, etc. But these effects are mostly some bulk
kinetic effects and are not very typical for systems with constrained geometries, where
many kinetic obstacles (cf. geometrical traps, chemical bonds) may exist.

The next parts of this article are organized as follows: in section 2, a brief
description of the kinetics of a model tribopolymerization process is given; in section 3,
an analysis of the model system and results are presented, and a discussion of them is
carried out. Section 4 serves for final conclusions.

2. Description of the kinetics of a model tribopolymerization process.
Fundamentals

It was presented before [4,6] that our tribopolymerization system consists, accord-
ing to the etymology of this word, of two parts (two autonomous first order ODEs). The
first equation is well-known in the tribological literature [4,6], and it looks like [15,16]

ρ̇ = bs + cρ− δρ2, ρ ≡ ρ(t), (1)

where ρ̇ stands for the first derivative of the surface dislocation density ρ(t) with respect
to time t, bs is an external source of dislocations, c is responsible for the generation
of dislocations (one by one), and δ represents a strength of pairwise annihilation of
dislocations (note here that the annihilation of dislocations prevails compared with the
generation of dislocations since ρ is raised to the power 2, in this case).

The origin for the processes that may lead to the formation and destruction of
dislocations is inevitably related to the selective transfer (ST) phenomenon taking place
under certain friction conditions (cf. [4, chapters 3–6] and references therein). One
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can argue here that in such a complex phenomenon and under the physico-chemical
circumstances like physical adsorption of surfactants dispersed in the lubricant on the
surface under friction, simultaneous action of the surfactant penetration and external
load exerted on the system, plasto-elastic deformation of the surface layer, softening
of the crystal surface as well as absence of some oxide films (supported by presence
of hydrogen atoms which inhibit emergence of them) or even appearance of certain
hydrodynamical effects (Beilby layer) may take place. One can easily find a real
influence of surfactants immersed in the lubricant medium on the formation and/or
disappearance of surface dislocations. Also, it is quite natural to think that some
opposite physical situation can occur, which means, that dislocations will play the role
of active (say, catalytic) sites for the polyreaction process in accordance with Taylor’s
theory of reactive centers (cf. [4, p. 115] and Ref. [143] therein).

Thus, the second equation describing the kinetics of the process in question is
equally well-known in the literature and can be of use here. This is the kinetic equation
for a polyreaction (polycondensation or another type of polymerization). It is usually
of the form [7,8,17]

φ̇ = es − kφx, (2)

where φ̇ has the same meaning as before, but is derived for the concentration φ of
monomers (species which are able to form polymers or macromolecular ensembles)
dispersed in a lubricant (or, more accurately, in a friction interlayer containing a lubri-
cant with polymeric additives included), es is a production rate related to an external
source of reactants [7], k stands for the chemical reaction rate coefficient, and x is the
order of the reaction which may be either an integer or even a rational (non-integer!)
value (also, k is not only temperature-dependent, but in our approach may directly de-
pend upon time t, too; cf. [7,8,11] for realizing a kind of reasoning presented therein).
Especially, the fractional value of x can be realized later from the behaviour presented
in figure 5.

Now, we shall state two basic assumptions which we wish to call for obvious
reasons [4,6] the coupling ansatzes. The coupling ansatzes read

bs = a+ bφ, bs ≡ bs(φ), (3)

es = e+ fρ, es ≡ es(ρ), (4)

where a and b as well as e and f are some constants, and such expressions follow
mathematically from the McLaurin expansion of bs and es around 0 with respect to
φ and ρ, respectively, up to the first order (this means that the ansatzes proposed are
linear in φ and ρ, respectively; the further generalization of this procedure will take
up higher orders of the McLaurin series, i.e., bs and es may be nonlinear in φ and
ρ, respectively, and also some “mixed” terms, like const · φρ, may appear in other
types of generalizations of formulae (3) and (4) assuming, however, that either bs or
es, or both, are functions of φ and ρ; this, however, will not be the subject of study
in this work). Expressions (3) and (4) reflect the experimental fact [2,4,17] that there
is a coupling (or a kind of mutual influence) between the production of polymer or its
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destruction (or degradation), and annihilation or creation (generation) of dislocations;
moreover, such a process may proceed in a periodic (in time) way which was shown,
e.g., in [4] (cf. section 4.6 for details) or [6].

Thus, a physical situation in which some polyreaction effects, like presence of
surfactants, partially reacted intermediates, colloidal metallic particles and ions, may
cause a change in the dislocation density is probably more difficult to understand.
Such a possibility offers, however, the ST-regime in which one may discover that the
triboelectrochemical reaction in the system is accompanied by the hydrogen production
and adsorption on the fresh metal film inhibiting with large effectiveness the oxida-
tion process. Lack of oxide films has a visible effect on the movement of surface
dislocations, that means, it facilitates a plastic deformation, e.g., of copper in sliding;
also, a huge mobility of dislocations may be achieved by the action of tribosurfactants
(cf. [4, p. 120]). Obviously, it would be hard to imagine that the only mechanism
causing a change in the dislocation density will be that related to monomer adsorption
onto the surface itself. At least, the plasto-elastic deformation of the surface layer
caused by simultaneous action of the physical monomer and/or surfactants adsorption
and external load has to be present; as a prototype example one can recall wetting
of aluminum by mercury mixed up with zinc 4% wt which directly leads to the ad-
sorptional softening of the metallic surface under the regime of tensile stress of the
material (Rehbinder’s effect [4, section 1, pp. 31–34]).

The next assumption that we shall make is novel when comparing with that stated
previously [4]. It takes into account some anomalies like the chemical reaction order
(denoted above by x), being a rational number, and also a time-dependent chemical
reaction rate coefficient. This assumption may be valid for some catalytic, diffusion–
reaction systems like the one modelled here, and it looks more realistic from the
physical viewpoint than that presented in the approach proposed earlier (cf. [4,6]). It
seems to be strongly recommended [3] for such systems with “fancy”, quite irregular
“moving” (i.e., changed in course of time during the friction process) interfaces like
that studied here (e.g., think of a piece of material of quite well-developed surface
being lubricated and polished by means of another possibly abrasive material; or the
friction process due to interaction of, e.g., two bones, via the (bio)liquid between them,
inside our fingers or legs, i.e., a self-adaptive process). We wish to choose, for the
same reasons as those presented in [7,8,11], the mathematical form of the chemical
reaction rate coefficient to be

k(t) = k0
(
1 + (t/τ )

)−h
, (5)

where k0 = k(0) > 0 is the initial value of k, τ represents the length of a “long time”
period after which a stationary state is possible to reach (it is assumed that τ � 0,
because typically the stationary state can be approached after a sufficiently large time
interval), and h is designed to be a physico-chemical parameter of the tribopolymer-
ization process which is related to its spectral or fracton dimension (denoted by ds)
by [7,8,12]

h = 1− (ds/2). (6)
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Thus, the quantity x introduced above is of the following form [7]:

x = 1 + (1− h)−1, if ds < 2 (7)

(note that if ds = 2 than x = 2; in general, x > 1). It is also worth mentioning that
h ∈ [0, 1].

The spectral dimension, in turn, can generally be inferred from the probability
of the system’s return to its initial state (origin) (denoted by Pret) which obeys an
asymptotic (scaling) relation

Pret ' t−ds/2. (8)

One can also get ds utilizing the Alexander–Orbach conjecture [7,18] which is, how-
ever, not proved for all cases [12], but it may be useful for some practical purposes.
Upon accepting that, we can write as follows [7,12]:

ds = 2df/dw, (9)

where df is the fractal dimension [9] of the surface of a material under friction and
dw has the meaning of the random walk fractal dimension (this random walk must be
equivalent to a diffusion–reaction process which takes place during friction; for details
see [2] and references therein). The first quantity, i.e., df , can be measured, e.g., by
the box-counting method [9] (or in a more rigorous way [13]), namely,

N ' `df , (10)

where N is the number of boxes of size ` covering the surface. The second quantity
dw obeys an asymptotic equation [12] (see also [19] and references therein) of the
form 〈

X2(t)
〉
' t2/dw , (11)

where 〈X2(t)〉 is the mean square displacement of the random walk [12]. It was
shown [20], however, that an effective dimension of the friction surface which is, in
fact, a reactive surface (or a catalyst) during the whole tribopolymerization process, is
not df but a slightly smaller quantity d′f = (df + 1)/2. Hence, the Alexander–Orbach
conjecture [7,14] provides

ds = 2d′f/dw = (df + 1)/dw. (12)

Thus, on the basis of equations (1)–(5), we are able to write down the whole three-
dimensional system of ordinary differential equations of first order in an autonomous
form (cf. [21] and references therein), i.e., when the right-hand sides of the equations
of system (13) do not depend explicitly on time t. This can be written as

ρ̇= a+ bφ+ cρ− δρ2,

φ̇= e+ fρ− kφx, (13)

k̇=−υky ,
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where

υ= hτ−1k
−1/h
0 , (14)

y= 1 + h−1 (15)

(note here that also x = (2−h)/(1−h); k̇, as previously, means differentiation of k(t)
with respect to time; in general, y > 1).

System (13) is a three-dimensional dynamical system with the initial conditions
of ρ(0) = ρ0, φ(0) = φ0 and k(0) = k0 as we stated above (the quantities ρ0, φ0 and k0

are positive constants). Its solutions can be derived either in an explicit form, e.g., ρ(t),
or, as a three-dimensional curve, in the phase space (ρ,φ, k) (a phase portrait can be
presented [22,23]). Generally, they can only be obtained numerically. Some limiting
(or reduced) cases can be found in an analytical way. Let us formally mention that
for c = δ = k = 0, and if one of pairs a and b or e and f (cf. equations (3) and (4))
is of the opposite sign, then system (13) reduces to a linear oscillator system [22].
Taking into account nonlinear ansatzes instead of those given by equations (3) and (4),
especially with some “mixed” terms like const ·φρ, one can be able to gain some other
known dynamical systems like prey-predator or competition systems (it may give rise
to some interesting effects like presence of bifurcations of stationary solutions or even
existence of deterministic chaos, i.e., “strange attractors”, in the system; cf. [4,6,22,23]
and references therein). Notice also that the parameters of the system can be partitioned
into four groups:

(i) free constant reference source (or shift) parameters: a and e;

(ii) coupling parameters: b and f ;

(iii) surface dislocation generation and annihilation parameters: c and δ;

(iv) chemical reaction parameters: k0, τ and h.

An interplay among them will influence the overall behaviour of the system under
study.

3. Analysis of the model and results

In this paper, we wish to present a rather qualitative analysis of the model for-
mulated above. Although, some analytical results will be given as well. The analysis
will be carried out for three different cases concerning the h-value, namely,

(i) h = 0, or equivalently, ds = 2 (i.e., in the case when the fracton dimension
reaches its maximum value; in our “dimensional language” it means that the
fractal dimension of the surface under friction is equal to the fractal dimension of
the random walk which is true for a pure random walk or Markovian process with
no constraints like geometrical obstacles or traps, cf. equation (9) and also [8,12]);
it formally reduces to the case presented before, and the phase portrait for this
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Figure 1. The phase portrait of system (13) and its cross-section for x = 2 and a = 0, b = c = 0.5,
δ = 0.005, e = 250.1, f = −250.0, y = 200, υ = 0, that is comparable with a case studied in [4,6]
and stands for a manifestation of the periodicity of the system in question. The initial conditions are:
ρ(0) = 1, φ(0) = k(0) = 0.1; the time interval was assumed to be t ∈ [0, 20], but at t ∼= 13.08 an
“escape to infinity” of the phase trajectory was observed. The picture is obtained by using Mathematica,

version 2.2.3.

case looks fairly unstable (a relatively quick escape to infinity is observed), but
manifests the periodicity of the system studied (cf. [4,6] for details; here its
ρφ-projection is plotted in figure 1);

(ii) h ∈ (0, 1), or equivalently, ds < 2 (clearly, ds > 0), where the full dynamical
system (13) represents the kinetic behaviour (the numerical results [24] show,
however, that there are no qualitative changes when comparing with the two-
dimensional system [4,6]);

(iii) h = 1, or equivalently, ds = 0 (i.e., if either the fractal dimension of the surface
approaches zero and dw 6= 0 or dw goes to infinity; cf. equation (9)); the former
case can only be thought of as a rather realistic case, where some very rarely
distributed “cusps” or peaks of a rough surface under friction exclusively account
for the whole tribopolymerization process, like in mountains, where mostly the
highest peaks are those which eventually may come “into action”, i.e., may stand
for the “reactive sites”, where the concentration of monomeric species in a friction
interlayer vanishes very fast to zero or even disappears (e.g., it can flow out), and
mostly the effects of generation and annihilation of dislocations in the material
surface play a relevant role (here, some analytical results will be presented).

Also, a certain consideration of the stationary states of the system in question, i.e.,
when

ρ̇ = φ̇ = k̇ = 0, (16)

will complete the investigation.
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Let us look at the point (i). Because of h = 0 one gets k(t) = k0 = const
(cf. equation (5) for details). In this case, the system (13) reduces to a two-dimensional
dynamical system studied before [4,6], with x = 2, which can be called a model tri-
bopolycondensation process in which the role of catalyst is played by the whole friction
surface (in the standard polymer kinetics literature, e.g., in [17], the polycondensation
process with a catalyst is a second order chemical polyreaction; here presence of the
catalytic friction surface may cause the formation of a polycondensate during the fric-
tion process). Since such a system (i.e., for h = 0 and additionally for e = 0) was
analyzed in [4,6] numerically, we only recall the main results. Namely, that the system
possesses the periodic solutions ρ(t) and φ(t). It is possible to control the amplitudes of
those periodic functions by changing k0. One is also able to regulate the frequency of
that periodic behaviour by varying the coupling parameters b and f (cf. equations (3)
and (4)). Moreover, the case of x = 2 seems quite unstable, that means, the periodic-
ity of the system is easy to be lost in a sufficiently long time period, most probably,
because of a polycondensate formation (an increase of the product concentration φ(t)
in course of time is observed; see [4,6] and figures presented therein). Observations
of reaching by the system a limit cycle and of how to get a steady state have also been
done [4,6]. Some control of the trajectories escaping to infinity (a “blow-up” effect) in
a phase space by either ρ(t) or φ(t) has been demonstrated as well. It is also possible
to consider here analytically a “reduced” case, i.e., when ρ(t) ≡ ρ0 = const (it could
be “an equilibrium friction state” in which the production of surface dislocations is
compensated by their annihilation), with a weak coupling of those two sub-processes
only (we set b = 0, but still f 6≡ 0; see equations (3) and (4)); as always in this case
k(t) ≡ k0 > 0. Assuming that, the system (13) can be replaced by one equation of the
form

φ̇ = A− k0φ
x, (17)

where A = e+fρ0; one can solve analytically [25] this equation for x = 2 (or h = 0).
The solution reads (cf. figure 2 which visualizes the quasi-equilibrium friction state
with a weak coupling of surface dislocation density and polyreaction fields)

φ(t) =
φ0

1 + φ0k0t
, (18)

where, as we see, φ0 = φ(0). This result is valid for any ∆ = 0, where ∆ = 4k0A
which is equivalent to ρ0 = −e/f . This means that e and f must be of the opposite
sign because ρ0 is always positive. For the case ∆ > 0, it turns out that

φ(t)− λ
φ(t) + λ

=
φ0 − λ
φ0 + λ

e−2k0λt, (19)

where λ = ((e + fρ0)/k0)1/2. For getting a visualization of the solutions that also
characterize well another quasi-equilibrium state

t(φ) = (k0/2λ) ln

(
φ+ λ

φ− λ
φ0 − λ
φ0 + λ

)
(20)
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Figure 2. A quasi-equilibrium friction state with a weak coupling of the surface dislocation density and
polyreaction fields, i.e., the solution to the problem (17) (see text) for ρ0 = −e/f , where ρ0 is the initial
density of the surface dislocations, and e and f are some coupling parameters used in equation (4), being

of the opposite sign (φ0 = 1 and k0 = 0.5, 1, 1.5 from top to bottom, respectively).

Figure 3. Monomer concentration φ versus time t-dependence for ρ0 > −e/f and for two regimes A
and B distinguished: in regime A (here λ = 0.95), φ decreases with time t starting from the initial value
φ0 = 1, but in regime B (λ = 1.05) quite opposite situation is observed, though the process proceeds in

time with different “intensities” (both curves are depicted for the same number of points).

is used (see figure 3). Some interesting approximate solutions of equation (17), for
x > 2, are also possible to obtain and will be presented below.

As to the point (ii), i.e., when h ∈ (0, 1), we wish to divide our analysis into
three sub-cases:

(a) h = 0.5 (or x = 3) which could describe or represent a tribopolycondensation
process with no catalyst [17], i.e., the friction surface does not play any signifi-
cant role (for example, it is not well-developed or too smooth, or it is somehow
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Figure 4. A model tribopolymerization process with no catalyst. The ρφ-projection of the phase portrait
of system (13) for x = 3 and υ = 0.5; all the remaining parameters and initial conditions of system (13)
take the same values as in figure 1 (also t ∈ [0, 20]), but the phase portrait possesses somewhat chaotic
character and the trajectory tends to a region of shrinking volume in the phase space. The picture is

obtained by using Mathematica, version 2.2.3.

“neutralised” by free radicals dispersed in the friction interlayer); here, a numer-
ical demonstration of the phase portrait (a ρφ-projection) is given in figure 4;
in this way a periodicity of the system as well as its chaotic character is mani-
fested (i.e., φ and ρ are periodic in time) and the trajectory tends to a region of
shrinking volume in the phase space (contrary to the case of x = 2 mentioned
above);

(b) h ∈ (0, 0.5) (or x ∈ (2, 3)) which would be responsible for certain intermediate
states: the smaller is the h-value the more the role of the friction surface as a
catalyst is pronounced, and conversely, the bigger is this value the less signif-
icant the influence of the friction surface on the polycondensation reaction can
be;

(c) h ∈ (0.5, 1) (or x > 3) which may stand for some chemical polyreaction kinet-
ics of higher order and will be postponed because of troubles in finding a clear
physico-chemical picture assigned to it (we only know that both φ(t) and k(t)
decrease quite rapidly in time; perhaps, it is the process regime in which the fric-
tion mechanism is dominating, and the machinery of creation and annihilation of
surface dislocations takes a favour, what will be clearly shown below in a limiting
case h → 1, where the process is completely friction controlled, i.e., an interplay
between some parameters c, δ and ρ0 is crucial).

For the sake of brevity we do not wish to present some numerical solutions to the
problem (13). It was done in [24], and no qualitative difference was found between
them and those presented in [4] or [6] on that level of the studies (cf. discussion of
the point (i)) except of the formal one, that means, those offered in [24] are frequently
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depicted in a three-dimensional phase space (ρ,φ, k) (cf. equation (13)). Unfortunately,
no analytical results were found for a full system like that given by equation (13).
However, all the effects described in [4,6] and also briefly listed above (e.g., periodicity,
regulation of amplitude and/or control of frequency of ρ(t) and φ(t) or an unstable
state for x = 2, etc.) are confirmed. The only quantitative difference is that the form
of k(t) (see equation (5)) “impinges” on the system another faster “time dynamics” (in
fact, the function k(t) is an inverse (power) function of time; notice also that its form
is invariant under time rescaling like t→ αt, where α > 0). An interesting analytical
estimate is easy to recover in the case of 0 < h < 1 (or x > 2) as well. Assuming
that φ0 →∞ (the initial concentration of monomers is very large) and φ(τ ) = 0 (after
a quite long time there are no monomers, i.e., a polymer is formed during the friction
process or all the monomers are somehow washed out, e.g., by mechanical removing
from the system during the processing), from equations (2), (5) and (17), one can
find [25] that∫ ∞

0

(
A− k(τ )φx

)−1
dφ = − π

k(τ )x sin(π/x)
= −

∫ τ

0
dt = −τ , (21)

where k(τ ) = 2k0 (see equation (5)), and we have utilized the following features of
the Euler Gamma-function Γ(z) =

∫∞
0 e−ttz−1 dt (Re z > 0) [25]:

Γ(y + 1) = yΓ(y); Γ(y)Γ(1− y) = π/ sin(πy) and Γ(1) = 1 (22)

for a real value y; moreover, we have applied the identity
∫∞

0 . . . = −
∫ 0
∞ . . . . Let us

recall here that ρ(t) ≡ ρ0 > 0 also in this case. Thus, from (21) and (22) it follows
that

(x/π) sin(π/x)− p def
= F (x; p) = 0, (23)

where p = (2k0τ )−1, which is a relationship among three physical quantities charac-
terizing the chemical polyreaction, namely, x, k0 and τ (note here that F is a nonlinear
function of x, being exclusively of negative value when x becomes fractional, and it
does not depend upon A = e + fρ0 (see equation (17)); this will be plotted against
the parameter p in figure 5). For x � 1 (i.e., for chemical reactions of higher order,
rather, or for h-values approaching one or ds tending to zero; cf. equation (17)) one
can write

sin(π/x) ∼= π/x (24)

and, applying equations (23) and (24), one gets immediately a very simple result

τ ∼= 1/(2k0), (25)

which means that in such an asymptotic regime (see above) the only dominating thing
is chemical polyreaction after the friction process being completed (or finished). The
result (25) looks quite natural and it expresses the fact that the more slowly the rate
of the chemical reaction may be pronounced, the larger are times τ after which a
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Figure 5. The generalization of the Vogel–Fulcher-type formula corresponding to the selective transfer
during the friction process, i.e., the solution to problem (13) given by equation (27) which is the nonlinear
(periodic in x) function F (x; p), defined in equation (23) (see text), plotted against some values of the
parameter p = (2k0τ )−1 (p = 0.5, 1.0 and 1.5, from top to bottom, respectively), where k0 is the initial
value of the chemical reaction rate coefficient, and τ is a time after which a stationary state can be

reached and for which k(τ ) = 2k0 (see equation (5) for details).
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“stationary state” is reached. Notice also that k0 could often be taken by the Arrhenius
formula, i.e.,

k0 = k00 exp
(
−Ea/R(T − Tc)

)
,

from which one learns that the bigger Ea-values or the smaller T -values are the smaller
is also the chemical reaction rate constant k0 (here Ea denotes the activation energy of
the reaction process enhanced by friction, T is its absolute temperature, and k00, Tc and
R are positive constants). Following this kind of reasoning, one may go a step further
and conclude that time τ , that exhibits the maximum time scale for the polyreaction
caused by friction, is of the experimentally observed Vogel–Fulcher form [26], i.e.,
τ = C1 exp(C2/(T − Tc)), where one gets C1 = 1/(2k00) and C2 = Ea/R (look just
at equation (25) and apply the Arrhenius formula to k0). Such a type of temperature
dependence is quite frequently met in glassy materials under, e.g., intense grinding
(under shock or irradiation) [27], also, in some amorphous (disordered; also partially
ordered) polymers or ceramics, or even biomaterials under certain physico-chemical
treatment (it is worth noticing here that, in general, some non-Arrhenius behaviour
may take place, e.g., for fragile liquids or non-Newtonian fluids like lubricants with
polymeric additives) [27,28]. Such a relationship can also be found as being character-
istic of Rehbinder’s effect (cf. [4, chapter 1, p. 33, equation (1.28)]) and, as expected,
of ST-phenomenon (look at [4, chapter 3, p. 115, equation (3.2)] once again). It may
also provoke to expect the friction coefficient of the system f to be of the same form,
namely, f = f0 exp(Ea/R(T − Tc)). The “structure” of the activation energy of the
process, Ea, appears to be the most interesting fact here since it can be represented
by Ea ∝ U − γσ, where U is the excessive energy as compared to the average mole-
cular energy at a given temperature that molecules should possess in order to react
chemically (i.e., it depends upon the energy of active centres), γ is a parameter which
depends, e.g., upon the dislocation density, structural changes, etc., and σ stands for
the stress of the material under friction. Equation (23), in turn, can be understood
in terms of generalization of the Vogel–Fulcher dependence valid for any chemical
polyreaction degree x (one can get strict Vogel–Fulcher temperature behaviour for
x � 1 in equation (23) and by applying to k0 the Arrhenius formula). Moreover,
since we are now in regime of 0.5 < h < 1, we may probably expect that the process
studied follows the Kohlrausch–Williams–Watts “relaxation” dynamics [28,29], but in
the full case only, i.e., when equation (5) is applied (note, that above we have only
studied a limiting case k(t) = k(τ ) = 2k0 = const).

The problem associated with point (iii), i.e., when h → 1, is fully solvable
analytically. Since, in this case x → ∞, and φ(t) vanishes very rapidly to zero
(practically, within an initial time t = t0 which, as previously, we set for simplicity
t0 = 0). Now, the solution to problem (13) looks like

k(t) = k0/
(
1 + (t/τ )

)
(26)
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Figure 6. A variety of the ρ versus t behaviour, i.e., the solution to problem (13) given by equation (27)
(see text) for ∆ = c2 +4δa = 0, where c and δ are some coupling parameters (cf. equation (1) for details;
δ is set to be equal to one here, also, ρ0 = 1) and quantity a stands for a parameter assigned to the external
source of surface dislocations of a material under friction; it is presented in some qualitatively different
regimes: the horisontal line – ρ is constant for r = 1; the decreasing middle line – ρ decreases with time
t for r = 0.5; the two remaining cases – r = 1.5 − ρ decreases with time t along a vertical asymptote
t = 2 for some “long” and “short” times, respectively; negative values of ρ should be discarded from

the physical point of view.

Figure 7. Three solutions of equation (29) showing that ρ is an increasing function of time t are presented
for ∆ > 0 and a > 0, and for different three values of δ = 9/19, 10/19 and 11/19 from bottom to
top, respectively (here we set ρ0 = 1, r = 0.95, ∆ = 1); a small increase in value of parameter δ may

produce here a blow-up phenomenon.

(which automatically follows from equation (5)), and (cf. figure 6 for a picturesque
outlook)

ρ(t) = r +
ρ0 − r

1 + δ(ρ0 − r)t
, r = c/(2δ), (27)

for ∆ = c2 + 4δa = 0 (pay attention to the notation used in section 2). For ∆ > 0 and
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Figure 8. Solutions of equation (30) are depicted for a = 0, i.e., with no external yield of surface
dislocations of the material under friction and for different values of parameter r, namely, r = 0.49, 0.5,
0.51, 0.55 and 0.6 going from the thickest to the thinest curve, respectively. Values for other parameters:

ρ0 = 1 and c = 1.

a > 0 one obtains

ρ(t)− r − (
√

∆/(2δ))

ρ(t)− r + (
√

∆/(2δ))
=
ρ0 − r − (

√
∆/(2δ))

ρ0 − r + (
√

∆/(2δ))
e−
√

∆t (28)

(where r = c/(2δ), once again, and ∆ is defined above) [25]. The time behaviour
of ρ(t) will be demonstrated in figure 7 using a more convenient (inverse) form,
namely,

t(ρ) = ∆−1 ln

[
ρ− r + (

√
∆/(2δ))

ρ− r − (
√

∆/(2δ))

ρ0 − r − (
√

∆/(2δ))

ρ0 − r + (
√

∆/(2δ))

]
. (29)

In the case of a = 0 (no external yield of surface dislocations) one has (figure 8)

ρ(t) =
2r

1− (1− (2r/ρ0)) exp(−ct) , (30)

for which ρ(t) is either an increasing function of time (for 2r < ρ0) or a decreasing
function of time (for 2r > ρ0), or it is constant (for value ρ0 = 2r).

A general remark is appropriate here. Namely, some of the solutions presented
above in this section are quite interestingly related to some experimental situations
measured; e.g., figures 1 and 4 reflect reasonably the time periodic character (note that
the model neglects spatial effects) of the dislocation density as well as of the monomer
(surfactant) concentration, improved much in many experimental situations (cf. [4]
and references therein, once again, mostly chapters 3–6). The other cases presented
reveal some well-oriented trends towards the experimental studies, but because of
being “the limiting analytical cases” they do not conform strictly to some experimental
curves. Figure 5, in turn, being even a generalization of the Vogel–Fulcher behaviour
shows at least some very promising tendencies and a knowledge on the behaviour
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of F with respect to x could serve as a criterion whether kinetics of the process are
of integer order or non-integer (fractional) order, rather (note that the most reduced
case here represents the exponential dependence for the relaxation time, τ , being
characteristic of Rehbinder’s effect and ST-process; cf. equations (23)–(25) and the
discussion thereafter; also, an interesting almost-self-similar behaviour of the F (x; p)-
dependence with respect to different chemical reaction order “scales” or values has to
be underlined).

Last but not least, we have to utilize equation (16) to get the stationary states of
the system. A strict calculus gives

ρst = −e/f , φst =
δρ2

st − cρst − a
b

, kst = 0 (31)

(where b and f must evidently be non-zero parameters) and reflects an interesting fact
that in the stationary regime chemical polyreaction and friction processes are coupled
with each other, but the chemical reaction rate coefficient in the stationary state goes
to zero (cf. equation (5) once again).

4. Final remarks

In this paper, we have proposed a three-dimensional system of ordinary differ-
ential equations of first order which has been used to describe in a more qualitative
than quantitative way the kinetics of the tribopolymerization process, in which both
friction and polyreaction fields are coupled with each other. The description is based
on more realistic physico-chemical foundations than those utilized in [4,6] for a two-
dimensional case. It is so, because we have taken into account a predominant role of
the geometry of the friction surface (we have introduced some measures of it in sec-
tion 2) as a catalyst as well as some relevance of the chemical reaction taking place in
the vicinity of it. The idea comes straightforwardly from experimental grounds [2,4,6]
which undoubtedly show that there is a coupling between friction and chemical re-
action of polymerizing species [27] dispersed in a lubricant (in fact, some interesting
theoretical ideas for a confined polymeric system have also been contained in [30]).
The generalization means also that the fractal-like chemical reaction kinetics is applied
because the system in question possesses frequently very much irregular rough surface
which catalyzes the chemical polyreaction as well.

As it was demonstrated in [4,6] for k being time-independent the system has
non-trivial periodic behaviour. Also, some numerical work was done to show that for
k given by equation (5) the time behaviour is essentially “of the same quality” when
comparing with the two-dimensional one [4,6,24].

In this article, we have shown a robustness of our approach by solving analyti-
cally some limiting analytical cases (cf. equations (17)–(20) and (26)–(30)) in which,
however, a linear coupling of two main fields (surface dislocations’ density and polyre-
actants’ concentration) has been expressed by means of the parameters (see above)
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characterizing the phenomenon under study. Some qualitative behaviour, however, of
a full dynamical system (13) has been described in sections 2 and 3.

The stationary states have been calculated as well. It demonstrates a kind of
coupling (or mutual influence) between friction and polyreaction characteristics which
is expressed by presence in equation (31) of parameters a, b, e, f , c and δ.

Also, we would like to state clearly that there is no direct dependence between
fractal characteristics of the process manifested by h or x and the tribopolymerization
phenomenon itself, but it is implicitly assumed that, e.g., the fractal dimension of the
surface will remain unchanged during the whole process under investigation. It seems
to be worth mentioning that some other, more powerful theoretical systems, like that
presented in [31], can surely be applied to describe the kinetics of the phenomenon
or subtleness of its time behaviour in a possibly natural way. In such a case of the
so-called anequilibrium dynamics, however, all the first order time derivatives have to
be replaced by some non-integer (rational) order time derivatives (cf. [31] for details).

The relationship between the system analyzed in this paper and the concept
of tribological interfaces is hypothesized in terms of the anomalous random walk
process, where the physical as well as geometrical characteristics of the active interface
can be done using a common “dynamic” exponent, i.e., the fracton dimension ds,
being, according the Alexander–Orbach conjecture, easily determined by the fractal
dimension of the surface as well as by the fractal dimension of the random walk
process proceeding on it or at the vicinity of it (see discussion in section 2). Such
a treatment of tribological interfaces, but mostly due to the fractal dimension of the
surface under friction and its changes during the friction process is well known in the
tribological literature [3] (see also the whole proceedings volume cited in [6]).

As to the removal of the polymer during the process in question and for having
technologists satisfied (say, to some extent), we are of the opinion that it does not appear
to be a central problem of this study, at least, for two reasons. First, because our system
is a model system, and it is only presumed that a sufficient amount of the monomer
or surfactant is present in it, and if needed, the resulting polymer structures either
depolymerize during the whole process or a certain destruction of the polymer chains
or some presence of the intermediate reaction products is preserved. Second, because
the system described is an open thermodynamical dissipative system, which means,
that it may, in fact, constantly exchange the matter and energy with its surroundings,
and a change of the useful (friction) work into the dissipated heat is expected to take
place during the whole process. For revealing this general property of the system, one
has to benefit from the modern theory of dynamical systems [32]. The idea is whether
a bounded volume element of the phase space (ρ,φ, k), designated by V (t), diminishes
in the course of time evolution. From the divergence theorem, it follows that (cf. [32,
chapter 5])

V̇ =

∫
V

d3x
3∑
i=1

F ixi , (32)
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where V̇ is the time derivative of V with respect to t and F ixi are the partial derivatives
of F i with respect to xi representing the right-hand sides of the equations constituting
system (13) for i = 1, 2, 3, respectively, from top to bottom (here x1 → ρ, x2 → φ
and x3 → k and the integration runs over k, φ and ρ, respectively), and if the system
dissipates energy then

V̇ < 0 (33)

(otherwise, it is a non-dissipative or conservative system). Evaluating the integral
in (32) one arrives at

V̇ = −VW (t), (34)

where

W (t) = W0(t)− c (35)

and

W0(t) = δ
(
ρ(t) + ρ0

)
+

1
2

(
k(t) + k0

)
W1(t) +W2(t), (36)

W1(t) =
φx(t)− φx0
φ(t)− φ0

, (37)

W2(t) =
ky(t)− ky0
k(t)− k0

(38)

(one can find all the symbols included in equations (35)–(38) in section 2; see equa-
tions (1)–(15) for details.) If W (t) > 0 then the whole system is dissipative. Here,
we are of the opinion that it is the case (since W0(t) is positive to a large extent, that
means, in a respective time domain and for some quite broad interval of the parameter
action chosen). The only contradictory cases would be when c, i.e., the parameter
responsible for the generation of dislocations, will reach enormously large values, or
when the process takes place at its early stages. The former is rather very unphysical
or much unprobable (also, it does not appear to be the assumption of our modelling).
The latter could happen in some specific initial condition regimes (if at all). Also, if
we are looking at the numerical solution in the phase space, presented in figure 4, we
can say that it is, at least, in a qualitative agreement with the aforepresented reasoning.
It is so, indeed, because the trajectory starting from an initial point has rather chaotic
character and is attracted by a certain point (or a region) of the phase space (also, the
volume of the attraction basin shrinks to zero). It may imply that the Kolmogorov
entropy (cf. [33] and references therein), denoted by K, i.e., a measure of the chaotic
versus non-chaotic behaviour of the system is positive, and the mean time, say Tm, in
which chaotic behaviour is observed appears to be the bigger the more carefully we are
able to look at the situation under study or to measure it (let us denote the accuracy
of these measurements by ξ). In such a case one takes on always the relationship
Tm ∝ K−1 ln(ξ−1) which is a useful theoretical formula to be applied by experimen-
talists as well. Technologically speaking, a constant removal of an excessive polymer
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or surfactant dispersed in the lubricant is realized, as in the sliding experiment for steel
and copper alloy couples with TSIATIM and fluoroplast greases [2,4] or others [34].

Finally, let us notice an interesting (in our opinion) correspondence between the
original systems of equations (equations (1)–(5)) and basic diffusion–reaction systems
(mostly, the Fisher’s equation), where, however, the diffusion term must be replaced
by our coupling linear ansatz (equation (3) is inserted into equation (1)). Thus, our
problem is a problem of selection of dislocations taken from dislocation field ρ(t) with
the selection intensity equal to one. The selection field in our case is obviously not
the diffusion field with a constant intensity, as it was invented for the original Fisher’s
problem, but chemical concentration field φ taken from equations (2) and (4) (cf. [35]
for details). Moreover, some analogy to problems for oscillator with quadratic friction
(quadratic damping term can be related to the annihilation term from equation (1))
and/or avalanches in granular matter in the mean-field approximation can be accepted
at least from a qualitative as well as mathematical points of view [36].
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